Brackish Groundwater Resources of the Northern Trinity Aquifer, Texas

GCAGS

October 2, 2018 Shreveport, Louisiana

Mark Robinson, P.G.

Innovative Water Technologies Texas water Development Board Mark.Robinson@twdb.Texas.gov

Daniel Lupton, P.G.

INTERA dlupton@intera.com

Unless specifically noted, this presentation does not necessarily reflect official Board positions or decisions.

Project Objectives

Evaluate the fresh, brackish, and saline groundwater resources of the Trinity Aquifer

- Evaluate groundwater, water chemistry, and geophysical log data available in the study area
- Develop and employ a technical approach for estimating total dissolved solids (TDS) from geophysical logs
- Delineate fresh, brackish, and saline groundwater both horizontally and vertically in the aquifers of the project area
- Calculate brackish groundwater volumes

Geology of the Trinity Aquifer

Northern Trinity Hydrostratigraphic Units

Age	D 1	Ground	Formations	Hydrostratigraphic				
m.y	Period	Стоир	North and West	Central		South		Units
65	Upper Cretaceous	Eagle Ford	not present	undifferentiated		undifferentiated		
		Woodbine	not present	undifferentiated		undifferentiated		
		Washita	Grayson	Buda	Buda			
				Del Rio		Del Rio		
			Mainstreet	Georgetown		Georgetown		
			Pawpaw					
			Weno					
			Denton					
			Fort Worth					
			Duck Creek					
100	Lower Cretaceous	Fredericksburg	Kiamichi Kiamichi			Kiamichi		
			a	Edwards Community Deals		Edwards		
			Goodland	Walmat		Comanche Peak		
			wainut	Wainut		Wainut Dalama		D 1
		Trinity	Antlers	Class Dava		Clas Dava		Paluxy
				Glen Kose	77 11	Glen K	ose	Glen Rose
					Hensell		Hensell	Hensell
				m '	Pearsall	Travis Peak	Pearsall	
				1 win Mountaine			Low Creek	Pearsall
				iviountaniis			Sligo	
					Hosston		Hoseton	Hoseton
-	110551011	110550011						

Trinity Geologic Framework: GAM Hydrostratigraphy Work Flow (Kelley and others, 2014)

Build Well Log Database

BRACS, BEG, TCEQ PWS, Q-logs, commercial sources

Correlate Stratigraphic Surfaces

• Original work but built off of previous studies

Interpret Lithologies from Well Logs

• Vertical record of interbedded lithologies - 5 to 10 foot scale

Map Layer Thicknesses and Compositions

• Structure, isopach, net sandstone maps

Interpret Depositional Environments

Enhance predictability between wells – defines properties

Well Log Database (Kelley and others, 2014)

- 1193 wells with depth registered image logs
- 109 wells with digitized logs

Well Log Correlations/Lithologies (Kelley and others, 2014)

Hydrostratigaphic Surfaces (Kelley and others, 2014)

Isopach Hydrostratigaphic Units (Kelley and others, 2014)

Salinity Zone Determination

- Use hydrostratigraphic framework to designate which water wells are completed exclusively in unique units.
- Use TDS values derived from groundwater samples taken in these wells to provide control in "up-dip" areas dominated by fresh and slightly saline groundwater production.
- Calculate TDS values from geophysical well logs to provide control in "down-dip" areas typified by higher salinity groundwater.

Resistivity Ratio Method (Alger, 1966; Estepp, 1998)

- BRACS well ID 35809 example log
 - Deep formation resistivity 5 Ω-m (ohmmeter)
 - Shallow formation resistivity 12 Ω-m (ohmmeter)
 - Other required information (temperature, depths, etc.) on log header (not shown)

Calculated total dissolved solids (TDS) using the resistivity ratio method for Hosston water wells that have a sampled water quality

State Well	Depth (ft)		Resistivity				F	TDSNaCl	TDSNaCl to	Calculated TDS		Measured TDS
Number			(ohm-m)					TDS Multiplier				
	ТОР	воттом	Ro	Rs	Rmfz	Rw				Sand Interval	Average Over Screen Interval	
4055701	2,494	2,611	33	34	4	4	0.12	869	1.2	1,045	1,045	852
4061501	1,136	1,208	28	27	3	3	0.11	1,258	1.14	1,432	1,628	2,047
	1,212	1,226	43	52	3	2	0.06	1,604	1.14	1,826		
	1,237	1,252	40	44	3	3	0.07	1,428	1.14	1,626		
4062801	2,209	2,307	33	27	1	1	0.03	3,454	1.16	3,999	4,034	1,021
	2,326	2,358	39	33	1	1	0.03	3,513	1.16	4,068		
5805902	2,191	2,287	26	24	2	2	0.07	1,914	1.17	2,242	2,203	2,288
	2,293	2,310	24	23	2	2	0.08	1,964	1.17	2,301		
	2,321	2,418	30	26	2	2	0.07	1,764	1.17	2,066		
1850501	2,278	2,295	27	14	1	1	0.04	3,148	1.09	3,439	3,476	1,541
	2,298	2,321	27	14	1	1	0.04	3,084	1.09	3,370		
	2,350	2,392	34	17	1	1	0.04	2,999	1.09	3,276		
	2,404	2,466	24	13	1	1	0.05	3,166	1.09	3,459		
	2,479	2,493	20	12	1	1	0.05	3,509	1.09	3,834		
4026102	565	612	36	38	13	12	0.34	349	1.14	398	398	920
3224306	1,892	2,000	33	30	5	5	0.15	732	1.19	874	925	2,098
	2,009	2,043	40	39	5	5	0.11	818	1.19	977		
3301301	2,016	2,066	23	19	2	3	0.11	1,706	1.16	1,980	2,063	1,766
	2,068	2,076	17	16	2	2	0.14	1,840	1.16	2,136		
	2,088	2,172	24	20	2	3	0.11	1,681	1.16	1,951		
	2,186	2,268	26	24	2	2	0.09	1,882	1.16	2,184		

Total Dissolved Solids: Sampled vs Calculated

- A) Sampled total dissolved solids plotted against calculated total dissolved solids using the resistivity ratio method.
- B) Sampled total dissolved solids plotted against calculated total dissolved solids using the resistivity ratio method, with higher sampled concentration well pair results added.

Trinity Salinity Zones:

Measured and calculated water quality for Paluxy and Glen Rose units

Trinity Salinity Zones:

Measured and calculated water quality for Hensell and Pearsall units

Trinity Salinity Zones:

Measured and calculated water quality for Hosston Formation

Volumes of fresh, moderately saline, slightly saline, very saline, and total groundwater volumes

	Total Volume (Acre-feet)									
Aquifer Unit	Fresh	Slightly saline	Moderately saline	Very saline	Total					
Paluxy	114,748,000	80,676,000	64,503,000	81,312,000	341,239,000					
Glen Rose	107,622,000	137,657,000	114,292,000	79,875,000	439,446,000					
Hensell	94,766,000	63,080,000	34,648,000	20,647,000	213,141,000					
Pearsall	31,834,000	52,494,000	52,433,000	31,124,000	167,885,000					
Hosston	171,110,000	246,770,000	232,964,000	256,357,000	907,201,000					
Total	520,080,000	580,677,000	498,840,000	469,315,000	2,068,912,000					

Texas Water Development Board

Next Steps

- House Bill 30, passed by the 84th Texas Legislative Session in 2015, requires the TWDB to identify and designate brackish groundwater production zones in the aquifers within the state.
- An expanded version of this study that includes groundwater production modeling (Robinson and others, 2019), will provide the data necessary for the TWDB to designate brackish groundwater production zones at a public board meeting in 2019.

References

- Alger, R. P., 1966, Interpretation of electric logs in fresh water wells in unconsolidated sediments: in Society of Professional Well Log Analysts, Tulsa, Oklahoma, 7th Annual Logging Symposium Transaction, 25 p.
- Estepp, J.D., 1998, Evaluation of ground-water quality using geophysical logs: Texas Natural Resource Conservation Commission, unpublished report, 516 p.
- Kelley, V.A., Ewing, J., Jones, T.L., Young, S.C., Deeds, N., and Hamlin, S., 2014, Updated Groundwater Availability Model of the Northern Trinity and Woodbine Aquifers: Prepared for the Texas Water Development Board, 942 p.

